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[11 We study the scaling relationships of source parameters and the self-similarity of
earthquake spectra by analyzing a cluster of over 400 small earthquakes (M, = 0.5 to 3.4)
recorded by the Anza seismic network in southern California. We compute P, S, and
preevent noise spectra from each seismogram using a multitaper technique and
approximate source and receiver terms by iteratively stacking the spectra. To estimate
scaling relationships, we average the spectra in size bins based on their relative moment.
We correct for attenuation by using the smallest moment bin as an empirical Green’s
function (EGF) for the stacked spectra in the larger moment bins. The shapes of the log
spectra agree within their estimated uncertainties after shifting along the w > line
expected for self-similarity of the source spectra. We also estimate corner frequencies and
radiated energy from the relative source spectra using a simple source model. The ratio
between radiated seismic energy and seismic moment (proportional to apparent stress) is
nearly constant with increasing moment over the magnitude range of our EGF-corrected
data (M, = 1.8 to 3.4). Corner frequencies vary inversely as the cube root of moment,
as expected from the observed self-similarity in the spectra. The ratio between P and S
corner frequencies is observed to be 1.6 + 0.2. We obtain values for absolute moment

and energy by calibrating our results to local magnitudes for these earthquakes. This
yields a S to P energy ratio of 9 + 1.5 and a value of apparent stress of about 1 MPa.
INDEX TERMS: 7215 Seismology: Earthquake parameters; 7209 Seismology: Earthquake dynamics and
mechanics; 7299 Seismology: General ormiscellaneous; KEYWORDS: spectrum, source parameters, self-similarity
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1. Introduction

[2] A major question in seismology is whether the fault-
ing mechanism of large and small earthquakes involves
different physics. That is, is a M = 8 earthquake justa M =2
earthquake scaled upward by a large factor or is something
fundamentally different occurring? Aki [1967] proposed
scale invariance of the rupture process, consistent with
observations that many geological processes are similar
over a wide range of scales [Abercrombie, 1995]. There is
currently a debate regarding whether earthquakes are truly
self-similar over their entire size range or if systematic
departures from self-similarity are observed [see, e.g.,
Abercrombie, 1995; Ide and Beroza, 2001]. Thus, although
many mechanisms have been proposed for differences in the
physics of larger earthquakes, including shear melting
[Jeffreys, 1942; Kanamori and Heaton, 2000], acoustic
fluidization [Melosh, 1979], rough fault sliding-induced
normal stress reduction [Brune et al., 1993], fluid pressur-
ization [Sibson, 1973], and elastohydrodynamic lubrication
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[Brodsky and Kanamori, 2001], the need for different
mechanisms is not yet firmly established.

[3] Studies of earthquake scaling generally involve com-
parisons between static measures of size (e.g., moment) and
dynamic measures of size (e.g., energy). Both measures are
typically derived from spectra of seismograms recorded at
some distance from the earthquakes. Because moment is
obtained from the low frequency part of the spectra, it is
usually measured much more reliably than energy or corner
frequency measurements, which require the high-frequency
part of the spectra where correcting for attenuation and other
path effects can be difficult. Current estimates of seismic
moment made independently from local, regional and tele-
seismic data usually agree within about a factor of 2. In
contrast, estimates of seismically radiated energy by differ-
ent investigators for the same earthquake often differ by
more than an order of magnitude [e.g., Singh and Ordaz,
1994; Mayeda and Walter, 1996].

[4] This uncertainty in seismic energy leads to different
interpretations of the energy density of earthquakes, as
measured by the energy/moment ratio, which is often scaled
by rigidity to represent the apparent stress. Several authors
find evidence that apparent stress increases with magnitude
[Kanamori et al., 1993; Abercrombie, 1995; Mayeda and

B08310 1 of 13



B08310 PRIETO ET AL.: SOURCE SCALING AND SELF-SIMILARITY B08310
n |
~ N~
~
0 10 20km
~
33.8 A - -
AN
N
\\ A KNW
S, >
N, ~
XX,
A %
\(//{
336 | RDM \\\A\ A -
A NN
cry WMC
SND SREATRO
o BINA A TR
SR \ FRD %'\\;/\P\ N
) N \ - = ~—
\ < )
33.4 w T T T
-117 -116.8 -116.6 -116.4 -116.2
Figure 1. Map showing the cluster of over 400 earthquakes (small black dots) and Anza stations (solid

triangles) used in this study. The inset shows the location of the study area (rectangle) in the state of

California.

Walter, 1996; Izutani and Kanamori, 2001; Mori et al.,
2003], while others argue that apparent stress is approxi-
mately constant [Choy and Boatwright, 1995; McGarr,
1999; Ide and Beroza, 2001; Ide et al., 2003]. Constant
apparent stress implies similar physics for small and large
earthquakes, while increasing apparent stress with magni-
tude implies that earthquakes are more efficient radiators of
seismic energy than small ones.

[s] Our approach here is to improve the reliability and
stability of source spectra by stacking and averaging
thousands of records from the Anza seismic network in
southern California. We use a simple method [Warren and
Shearer, 2000, 2002] to isolate the relative source spectra
from the path and site effects by stacking the computed
log spectra after subtracting the appropriate path-site
terms. This approach is also similar to that used by
Andrews [1986] to analyze spectra of the 1980 Mammoth
Lakes California earthquake sequence. Rather than obtain-
ing an absolute measure of individual source spectra, we
obtain relative shapes of spectra with respect to other
earthquakes. We then stack the spectra in bins of similar
moment to obtain average spectra (and estimated uncer-
tainties) as a function of earthquake size and apply
attenuation corrections using the smallest earthquakes as
empirical Green’s functions (EGF) [e.g., Mueller, 1985;
Hough, 1997]. The resulting spectra are sufficiently
smooth that direct tests of the self-similarity hypothesis
are possible, as well as measurements of corner frequency
and energy. All of our results indicate self-similarity is
closely obeyed over the M; = 1.8 to 3.4 size range of our
EGF-corrected data.

2. Data Processing

[6] We used records from the Anza seismic network
[Berger et al., 1984; Vernon, 1989], 9 high-quality, three-
component stations located on hard rock sites near an active

part of the Clark Lake segment of the San Jacinto fault in
southern California (Figure 1). We began this study by
selecting about 800 earthquakes located in a tightly clus-
tered volume (4.5 km sided area, with most of the events
between 5 and 12 km depth) near the Toro Peak station
(TRO) and 50 km from the most distant station (RDM). In
this region, the database is complete to about M; > 0.5 with
generally good signal-to-noise ratio records. The earth-
quakes occurred from 1983 to 1993, at which time the
network recorded at 250 samples per second with Geospace
HS-10, 2-Hz seismometers. We selected a relatively com-
pact group of earthquakes so that the path to each station
would be similar between different earthquakes, permitting
the use of simple corrections for attenuation and other path
effects.

[7] We use both P and S waves and select time windows
for P on the vertical component and time windows for S on
all three components. Both windows start 0.5 s before the
analyst pick of the arrival, with a total window length of
1.28 s. We also select a noise window of the same length,
with the last data point just before the P wave window. The
velocity spectrum is estimated using the multitaper algo-
rithm [Park et al., 1987] and then corrected for the instru-
ment response function. The S wave spectrum is calculated
as the vector summation of spectra from all three compo-
nents. Figure 2 shows an example of this process for a
vertical component record from station FRD.

[s] We apply a signal-to-noise ratio cutoff, where we use
spectra only when the mean ratio is greater than 5.0 in the
0—80 Hz frequency band and the ratio is greater than 3.0 at
80 Hz. At higher frequencies, the signal-to-noise ratio
decreases very rapidly (see Figure 2), so we limit our
analysis to frequencies below 80 Hz. After applying the
cutoff, we have 2735 records (including both P and §
waves) from 470 earthquakes. Because of their larger
amplitudes, the S waves have generally higher signal-to-
noise ratios than the P waves; thus our signal-to-noise cutoff
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Figure 2. Example of computed spectra from the largest magnitude earthquake in the study area
(M; = 3.4) recorded at station FRD, vertical component. (a) The time series, with horizontal bars
showing the noise, P, and S windows used to compute the spectra. In this case the S wave shows up
more clearly on the horizontal components. (b) Spectra for the windows shown in Figure 2a,
computed using a multitaper method. Note the rapid decrease in signal-to-noise ratio at the higher

frequencies.

excludes P waves from the smallest earthquakes in our data
set, which are represented only by S wave spectra.

[¢9] One possible concern is that P wave coda may be
contaminating the S wave window. This potential source
of bias is likely to have its largest effect on the closest
stations where the S — P time is the smallest. To test
what effect this may be having on our results, we
repeated our analyses using subsets of the data where
we removed the closest, the two closest and the four
closest stations from the source region. Although there
was some increase in the variability of the stacked spectra
as we reduced the number of data in the stacks, there
were no systematic changes in the S spectral shapes. Thus
it does not appear that P contamination of S is a
significant factor in our analyses.

[10] Since multiple stations record every earthquake and
many earthquakes are recorded at each station, we can
isolate the source and receiver contributions to the spectra.
Because our source region is relatively compact, the
receiver contributions will also include most of the path
effects. Following the method described by Warren and
Shearer [2002], it is possible to isolate the relative source
spectrum (Figure 3) if we assume that the observed
spectrum D;( /) from each source and receiver (denoted
S; for the ith earthquake and R; for the jth station) is a
product of source effects and path-site effects. We itera-
tively stack all log spectra from each earthquake, after
removing the appropriate station term, to obtain the
earthquake term:

log () = -3 [log(Dy)  log (R, o)

J=1

S| =

a
A B C
b
Computed Stacked Path-
Log Spectrum  Station Term
A |\ |\ = |\’\-\
+
B =
+
C =
K'\—\, /_/
Stacked
Earthquake \
Term

Figure 3. Cartoon explaining how spectral stacking is
used to obtain the earthquake term, as by Warren and
Shearer [2002]. If a given earthquake (star) is recorded at
stations A, B, and C (Figure 3a), the earthquake term is
computed by stacking the log spectrum from earthquake 1
computed for stations A, B, and C after removing the path-
station terms for these stations (Figure 3b). An analogous
procedure is used to compute the station terms.
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Figure 4. Examples of path-station terms for P (solid line) and S (dashed line) waves. The number of
earthquakes recorded at each particular station is given in parentheses. Note that the path-station term for
the S waves is always larger, reflecting the higher amplitude of S compared to P.

and we also stack all log spectra from each station, after
removing the earthquake term, to obtain the path-station
term:

lzm: log

i=1

log(R — log(S))] (2)

E

where D;; is the computed spectrum, S; the earthquake term
for the ith earthquake, and R; the path-station term for the jth
station. Since the earthquake term and the path-station term
are dependent upon each other, we solve the set of equations
iteratively until we reach a stable result, where the fractional
change in either the source or path-station terms is less than
10~*. We normalize the average log source spectra for all
our earthquakes to unity, as a starting point for the iteration
process. In practice, we are mapping the deviations of the
source spectra from this reference flat spectrum.

[11] After source and path-station terms are separated we
obtain 470 relative source spectra and 9 path-station spectra
(separately for P and S waves). Figure 4 shows the P and S
path-site spectra for nine different stations. Because we have
not yet assumed a source model (e.g., w 2, etc.), the shape
of each of these spectra will include both source and
attenuation contributions. The information is contained in
the differences between these curves, which are significant
because all of the stations recorded the same set of earth-
quakes. Variations in attenuation among the stations can be

seen in the position at which the spectra begin to falloff at
high frequencies. For example, it is clear that station SND,
located within 100 meters of the surface trace of the San
Jacinto fault, records a more attenuating path than station
FRD, despite the fact that FRD is located slightly closer to
the earthquake cluster. In general, there is no clear distance
dependence to the observed path-station spectra, suggesting
that local site effects beneath each station are dominating
the spectral differences among the stations.

[12] Each of the 470 relative source spectra represents the
average log spectra of all stations recording the earthquake,
after correcting for differences among the path-station
terms. To study how these source spectra vary as a function
of earthquake size, we divide our data into 20 bins in
relative moment, which is estimated from the low-frequency
spectral amplitude. Because our S wave data span a larger
total moment range than the P wave data, the moment range
within each S wave bin is larger than in the P wave bins. At
this stage in our analysis, we do not compare P and §
amplitudes directly; rather we process the P and S spectra
separately and obtain independent results for each phase
(later comparisons between P and S corner frequencies will
jointly consider the data).

[13] Selected S wave results are plotted in Figure 5a. Each
binned source spectra is the result of averaging between 1
and 86 earthquake spectra (each of which is itself a stack of
spectra from different stations recording the earthquake).
The resulting binned source spectra are much smoother than
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Figure 5. Relative source spectral shapes for some selected bins. (a) Shapes relative to the average
spectra, which were forced to have a constant log amplitude of 1. Numbers to the left of each spectra
indicate the number of earthquakes in that particular bin. (b) Corrected source shapes, after applying the
smallest magnitude bin as an empirical Green’s function (EGF). To avoid passing unwanted line
components present in the smallest bin, we smoothed the reference spectrum with a 20-point moving

average before subtracting it from the data.

the individual spectra that go into the stacks. There are
generally many more earthquakes in the bins at smaller
moments because of the much larger number of smaller
earthquakes in the data set. The relative moments among the
bins can be seen in the low-frequency limit of the spectra
(i.e., at about 1 Hz). These moments are not evenly spaced
in Figure 5 because the moments of the earthquakes within
each bin are not always evenly distributed. We use a
bootstrap technique that randomly resamples the earth-
quakes within each source spectral bin in order to estimate
uncertainties on the binned spectra, and later to estimate
uncertainties on properties, such as corner frequency and
energy, that we compute from these spectra.

[14] Asin the case of the path-site terms, the absolute shape
of the spectra plotted in Figure 5a is unconstrained (owing to
the intrinsic tradeoff between the average source spectrum
and the average path-site response function). We resolve this
tradeoff in our iterative method by forcing the average source
spectrum to unity. This is why the spectra for the small
earthquake bins curve upward at high frequency. This indi-
cates that, as expected, these earthquakes have a shallower
falloff at high frequencies compared to larger earthquakes. To
obtain an estimate of the true spectral shapes of the sources,
we use the smallest moment bin as an empirical Green’s
function (EGF) for all the other bins.

[15] Figure 5b shows the results of subtracting the log
spectra of the smallest bin from the others. These EGF-
corrected spectra have the features expected for source
spectra: a flat response out to a corner frequency that

increases with decreasing earthquake size and a rapid falloff
beyond the corner frequency. As we will discuss later this
falloff closely agrees with the Brune w 2 source model
[Brune, 1970]. We plot all of the EGF-corrected spectra in
Figure 5, but our later analyses will focus only on those bins
at least one order of magnitude larger in moment than the
EGF reference bin. For comparison, Mori et al. [2003] used
a M ~ 1.5 smaller EGF and Frankel et al. [1986] used
earthquakes with M < 2.1 as EGF of M ~ 3 earthquakes. As
previously noted, because of signal-to-noise limitations, we
do not use P wave data from the smallest earthquakes so the
smallest P wave EGF bin represents the same bin as the
third smallest S wave EGF bin.

3. Implications of Self-Similarity

[16] Before further analysis, it is instructive to consider the
predicted effects of earthquake self-similarity on recorded
spectra [e.g., Aki, 1967]. Figure 6 illustrates the expected
change in the pulse shape and spectrum for an earthquake
rupture that is increased in size by a factor . Assuming the
dimensions of the larger rupture are scaled proportionally,
then the fault area, 4, will increase by a factor b?, the
displacement, D, will increase by b, and the moment, M, =
nDA, will increase by a factor of »°. Figure 6b shows the
resulting change in a displacement pulse, u(f), recorded in
the far field, assuming identical source and receiver locations
and no attenuation. The exact form of the shape of this pulse
depends upon details of the source, but assuming simple
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Figure 6. Illustration of the effects of self-similarity when

an earthquake is increased in size by a factor of b.
(a) Rupture area, which increases by b the displacement,
which increases by b, and the moment and energy, which
increase by b°. (b) A recorded far-field displacement pulse,
which will increase in length by b and in height by 5°.
(c) Log-log plots of the spectra, which will have identical
shapes but shifted along an w ™ line.

scaling between the two earthquakes, the pulse shape will
change in a predictable way. In particular, assuming the
rupture speed is constant between the earthquakes (as simple
self-similarity predicts), the pulse length will increase by a
factor of b and the pulse height will increase by a factor of
b*. This is necessary in order for the moment, which is
proportional to the integrated area under the pulse, to
increase by b°.

[17] Tt follows that the displacement pulse, u*, recorded
by the second earthquake can be expressed as

u*(t) = b*u(t/b) (3)

where u(?) is the recorded displacement pulse of the first
earthquake. The seismic energy, E;, in the recorded pulse
will be proportional to [ i*(¢) dt (the integrated square of
the slope of the pulse), so the second pulse will contain a
factor b> more energy than the first pulse. Thus the energy
density (E/M,) remains constant.

[18] Using the similarity theorem for the Fourier trans-
form, it follows that the spectrum of the second earthquake
is given by

u*(w) = b3u(bw) 4)

where u(w) is the spectrum of the first earthquake. This
relationship predicts that the shape of all spectra on a log-
log plot will be identical but offset along a line of w™>
(Figure 6c¢).
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[19] This provides a possible test of self-similarity that
does not depend upon any assumptions regarding which
source model is most appropriate (w %, w °, etc.). We
perform this test (Figure 7) by shifting the EGF-corrected
spectra along an w ™ ~ line and find that the shapes are in
agreement within their estimated uncertainties. Furthermore,
there is no systematic dependence with moment exhibited in
the alignment of the binned spectra (Figures 7c and 7d). The
P wave spectra do not align as closely as the S wave spectra
at low frequencies (<1 Hz) because the individual P wave
stacks are not flat at low frequencies (Figure 7a). Although
we do not fully understand the reason for this behavior, the
shapes of the P spectra are nonetheless similar within their
uncertainties. It is likely that this anomaly in the P wave
spectra is related to decreasing signal-to-noise ratios at low
frequencies, which could bias the EGF reference stack
because it is derived from the smallest earthquakes.

[20] The S wave spectra are noticeably smoother and
provide our most reliable constraints on the similarity of
the spectra as a function of moment. This is the most
fundamental result in our study and suggests the self-
similarity hypothesis is valid for our data set. The great
advantage of this analysis is that we can check if spectral
shapes are self-similar or if there are systematic differences
in the shapes as magnitude increases, without assuming a
particular model of corner frequency and high-frequency
falloff. In contrast, conventional methods for making infer-
ences about source scaling are heavily focused on paramet-
ric data derived from the spectra rather than the spectra
themselves. These parameters do, however, provide further
insight regarding source properties.

[21] Implicit in our spectral comparisons is that the focal
mechanisms and rupture directions do not vary systemati-
cally between smaller and larger earthquakes because this
could bias the results obtained at particular stations. We
have not examined the focal mechanisms for our earth-
quakes, but we have no evidence that this is the case. Such
problems are likely to be minimized in our analysis because
we are averaging results from many stations at different
azimuths and distances from the earthquakes. Furthermore,
it seems unlikely that these possible biases would have the
effect of producing apparent self-similarity in our measured
spectra without self-similarity being present in the earth-
quakes themselves.

4. Source Parameter Modeling

[22] The source parameters seismic moment (M), corner
frequency (f.), and radiated energy (E,) can be estimated
from the source spectra and are important in the under-
standing of the physics of the earthquake source, as well as
for computing apparent stress (o,), defined as pEy/M,,
where p is the rigidity. If self-similarity holds, as tested in
section 3, this ratio should remain constant over the same
range of magnitudes.

[23] We initially fit our P and S displacement spectral
stacks with a general source model [e.g., Abercrombie,
1995]:

u(f) = ——m1m (5)
+
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Figure 7. EGF-corrected stacked spectra for bins of different source moment, showing the self-
similarity of the spectra when shifted along an w > line. (a) P wave spectra and (b) S wave spectra, with
1-0 error bars estimated using a bootstrap resampling method. The spectra shifted along an w > line
(dashed lines at left) for (c) P waves and (d) S waves. The spectra agree in shape within their estimated
errors, consistent with the earthquake self-similarity hypothesis.

where (2 is the long-period amplitude (relative seismic
moment), f'is the frequency, f; is the corner frequency, » is
the high-frequency falloff rate, and y is a constant. We
allowed the values of n to vary while using v = 1 as well as
v = 2; that is, we experimented with both the Brune [1970]
and Boatwright [1980] models, allowing the falloff term to
vary as well as corner frequency and relative seismic
moment. We used a grid search technique to find the best
fitting set of parameters (2, f;., n, and ). We restricted this
procedure to those size bins that have relative moments
10 times larger than that of the EGF bin (see Figure 5).
[24] In general, we found that a simple w™ " model (i.e.,
v = 1) worked reasonably well with values of n ranging
from 1.8 to 2.2 (i.e., very close to the Brune w2 model) and
that allowing additional free parameters did not significantly
improve the fit. Predictions obtained using v = 2 yielded
spectra with sharper corners than are seen in our stacked

spectra. It is possible that individual events have spectra
with these sharp corners, but given some variability in the
positions of the corners, the corner is smoothed and wid-
ened in the stacks over many events so that the Brune model
gives the best fit. We therefore used the model

ulf) =13 T (6)

and solved for the best fitting €2, f., and n for the results
presented here (see Figure 8 for examples of the resulting
fits to the stacked spectra).

[25] The radiated seismic energy is proportional to | i(f)
dt, the integrated square of the measured velocity. We
perform this calculation in the frequency domain by con-
verting the displacement spectra to velocity, squaring and
integrating [e.g., following Ide and Beroza, 2001], being
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Figure 8. EGF-corrected stacked spectra and best fitting source models for (a) P waves and (b) S
waves. For clarity, only some of the moment bins are plotted.

careful to extrapolate to very high frequencies using the
model falloff rate. In this study we compute energy from the
best fitting model rather than directly from the data; that is,
we use

= ] 2

where [ is the relative seismic energy. Because we are
integrating the model-predicted spectrum rather than the
data, we can extend the upper integration limit to a
sufficiently high frequency to avoid any underestimation
of the energy.

5. Calibration to Absolute Moment and Energy

[26] Our results described so far involve only relative
estimates of moment and seismic energy. To obtain absolute
measures of these parameters directly from our data, we
would need to apply corrections for geometrical spreading,
radiation pattern, free surface, and source-receiver imped-
ance contrast effects. Because these corrections are often
difficult to estimate precisely, this will introduce consider-
able uncertainty into our results. However, because our
earthquakes are in a single compact region, these correction
factors are likely to be highly correlated, implying that
relative measures of moment and energy among our earth-
quakes are determined more accurately than their absolute
level. Thus our most precise results involve relative
measurements among our earthquakes. However, for com-
parisons to other studies it is useful to have some measure
of absolute moment and energy. Our approach to this
problem is to exploit the fact that these earthquakes were
also recorded by the Southern California Seismic Network
(SCSN), which provides well-calibrated local magnitude
estimates (moment is not routinely computed for earth-
quakes this small).

[27] Assuming that M; ~ My, we can estimate moment
M, using the Kanamori [1977] relation

My = (2/3)log;g My — 10.7 (8)

In this way, we can compute a scaling factor to relate our
relative moment estimates (), to local magnitude and to
true moment M, A comparison between SCSN mean
catalog M; versus our estimated M; (Figure 9) shows a
linear relationship with a slope close to unity, as expected
if the 2/3 factor in equation (8) is accurate. Previous
studies have shown that in the magnitude range of our
data set, a linear relation between log(M,) and My, fits
the data in southern California, although with some
variations on the 2/3 factor (see Hanks and Boore [1984]
and Abercrombie [1996] for more detailed discussion). A
change in the scaling factor would change the absolute
moment magnitude after calibration, but the relative
moment between the different earthquake bins should
remain constant.

[28] Now consider the theoretical relationships for M, and
E for a double-couple source in the far field in a uniform
whole space. The standard formula [e.g., Aki and Richards,
1980; Kanamori and Rivera, 2004] for the moment in this
case is

My = 4’1Tp63l’c U(;el Q 9)

where p is the density, c is the seismic velocity (either o for
P wave or (3 for S wave), r is the source-receiver distance,
U 1s the radiation pattern, and €2, is the observed long-
period amplitude. Now assume that we know M, p, and ¢
independently. We can then rewrite equation (9) as

Usp Qo

= 4mpc® —
. My

(10)

Note that 1/r represents a geometrical spreading term that
could be generalized to a more complicated model.

[29] For the same whole-space double-couple model,
the radiated seismic energy may be expressed as [e.g.,
Boatwright and Fletcher, 1984]

<c U(\Z)(-)>
2

E¢ = 4mper?
s . U¢9

I (11)
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Figure 9. Comparison between M; as measured by the Southern California Seismic Network (SCSN)
and M, as estimated from our relative moment measures using an empirical scaling factor.

where (.UZ) is the mean over the focal sphere of (.U)*
(=4/15 for P waves and 2/5 for S waves) and [/ is the
measured relative energy (i.e., the integrated velocity
squared). Because this equation involves the ratio of Ugg
and », we can use equation (10) to obtain

) L
OQ(z)

2
EC— <cU09> (12)
S dmpcd

which is independent of the geometrical spreading and
radiation pattern terms. This equation remains accurate if
free surface corrections are applied or if the instrument gain
is incorrectly known, provided M, is determined indepen-
dently. In the case where p and ¢ vary between source and
receiver, carrying through the impedance correction terms
shows that equation (12) is still valid provided p and ¢ are
taken at the source.

[30] Because the estimated energy varies inversely as ¢,
the results are very sensitive to errors in velocity at the
source. A 15% error in ¢ will produce about a factor of
2 error in E,. In this study we use o = 6.0 km/s, 8 = o/1/3,
and p = 2.7 kg/m’, which leads to the value 1 = 3.24 x 10"
Pa. The values of velocity are very close to those from a
three-dimensional seismic velocity inversion [Scott et al.,
1994] for the source region. We estimate the uncertainty in
our source velocity estimates to be less than 5%.

[31] The total radiated seismic energy is obtained by
adding the energy for P and S waves

E, = E] +E; (13)
Finally, it is important to recognize that absolute energy
estimates are also very sensitive to attenuation corrections.
We assume here that the EGF approach has correctly

removed attenuation effects, but this remains another
possible source of uncertainty in our results.

6. Results for Corner Frequency and Apparent
Stress

[32] To compare P and S corner frequencies, we per-
formed a separate analysis in which the relative moment of
each earthquake was estimated from both the P and S
spectra so that the same earthquakes would be contained
in each moment bin. As discussed in section 5, this relative
moment will later be calibrated with estimates of moment
from local magnitude determinations. We find that the P
wave corner frequencies determined here are systematically
higher than those estimated for S waves from the same
earthquakes (Figure 10). The ratio f.(P)/f.(S) is about 1.6
(individual measurements range from 1.3 to 2.0), consistent
with the model of Madariaga [1976] and very close to
values determined using borehole recordings at 2.5-km
depth in the Cajon Pass, California, by Abercrombie
[1995]. This ratio is likely to correspond principally to
source effects since attenuation and other path-site effects
have been removed.

[33] As analyzed by Abercrombie [1995], the ratio of S to
P wave energy (known as g) is also very important. From
Boatwright and Fletcher [1984] we have

=6) )

where f.(S) and f.(P) are the corner frequencies for S and P
(which are assumed to have the same falloff rate at high
frequencies). Note that ¢ = 23.4 for a Poisson solid if the
corner frequencies are identical. In our study, f.(P) is about

(14)
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Figure 10. Comparison between P and S wave corner frequencies as measured for the different moment
bins. Dashed lines represent different scaling factors. The data suggest f.(P) =~ 1.6f.(S).

1.6 times larger than £.(S), reducing the predicted value of ¢
to about 6.

[34] Our estimated P and S energies (Figure 11), calcu-
lated using equation (12) for the different moment bins,
yield ¢ = 9 £ 1.5, the difference from the predicted
value (¢ = 6) resulting from the fact that our models permit
the falloff exponent to vary slightly between P and S waves.
Previous studies have found considerable variation in ¢
estimates, as they are highly dependent upon corner fre-
quency shifts, but our results are in reasonable agreement

with, for example, Boatwright and Fletcher [1984] (¢ =
13.7 £ 7.3) and Abercrombie [1995] (¢ = 14.31 with values
from 4.43 to 46.26). We did not directly obtain P wave
energy for the two smallest spectral bins because their
relative moment was not 10 times larger than the P wave
EGF. To obtain P energy for these bins, we divided the S
wave energy by the ¢ = 9 scaling parameter estimated from
the other bins.

[35] Another commonly applied test of self-similarity
[e.g., Abercrombie, 1995; Ide et al., 2003; Kanamori and

Figure 11.

10 T T T T P
10" o .
/d/
= 7
; 109 L P © 4
& L 70
g // O
& L0
% /// O
z 10° | & ]
wn b
&
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bins. The best fitting line is for E5 = 9 E?.
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Figure 12. (a) P and (b) S corner frequencies versus moment, derived from the stacked spectra for the

different moment bins. The results indicate M, o />
for bins with more than three estimates.

Rivera, 2004] is to plot corner frequency versus seismic
moment. As previously discussed, self-similarity predicts
that M, o f.73. We determined the relative seismic moment
and corner frequencies for P and S waves independently
(see Figure 12). The relative moment is scaled to obtain an
approximation of the absolute seismic moment (sece
section 5). Corner frequencies follow the cube root scaling
expected from self-similarity, as previously observed by
Ide et al. [2003]. Of course, this is not surprising, given that
the spectra themselves obey self-similarity scaling (see
Figure 7 and prior discussion). Because of the corner
frequency shift for P and S waves, we plot this relationship
independently. It is possible that the 40 Hz and higher
corner frequencies for the smaller moment bins are con-

as shown by the dashed lines. Error bars are shown

strained less accurately than the corner frequencies for the
larger earthquakes because our analysis extends only to
80 Hz. However, there are more earthquakes in the smaller
moment bins, resulting in smoother stacked spectra (see
Figures 7 and 8), which likely improves the reliability of
the corner frequency estimates even when less of the
spectrum is available. It is clear from Figures 7 and 12
that the available part of the spectra are consistent with the
self-similarity hypothesis.

[36] The relationship between seismic moment and
radiated seismic energy is also important and has been a
focus of many previous studies. This relationship is com-
monly expressed in terms of apparent stress, defined as o, =
pnEM,y. Figure 13 shows apparent stress plotted as a

M
1.5 2 25 v 3 35
10 T T T T T
2 1 ) ¢ o E
bm q) 0;) (P q) o
0.1 . . s P | Lol . . . P | P
1011 1012 1013 1014 1015

Seismic Moment (N m)

Figure 13. Apparent stress o, versus moment for the different moment bins. Apparent stress is nearly
constant over My, = 1.8 to 3.4, with an average value of about 1 MPa.
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function of moment for our spectral stacks. The E /M, ratio
is approximately constant as moment increases, as predicted
if self-similarity is obeyed and apparent stress is constant as
a function of earthquake size. Given the scatter in our data, a
small degree of scaling is possible. A weighted least squares
fit to the points in Figure 13 results in E/M, oc M§ 08010,
providing relatively tight error bounds that include the zero
exponent result expected from self-similarity.

[37] The average apparent stress is about 1 MPa, but for
the reasons discussed above, this value is less well con-
strained than the relative o, between our different earth-
quake bins. The two largest sources of error in our absolute
o, estimate are likely to be (1) our calibration factor
between relative moment and My; and (2) the assumed S
velocity at the source. Any calibration factor error will scale
directly as M,. From equation (8) we see that if, for
example, our My, estimates (assumed equal to the SCSN
M values) are 0.2 units too large, this will result in o,
estimates that are about 2 times too large. A 5% error in our
assumed source S velocity will yield about 30% uncertainty
in o,. Given these uncertainties and the scatter shown in
Figure 13, a reasonable range for the possible values of the
average apparent stress is 0.3—3.0 MPa.

7. Discussion

[38] Our study indicates that self-similarity of the earth-
quake source is consistent with data from over 400 small
earthquakes in our study region, as shown by the scaling of
source parameters such as corner frequencies and apparent
stress as well as the similarity in the shapes of the source
spectra themselves, independent of any particular source
model. This conclusion is based on stacks of earthquake
spectra in bins of similar seismic moment, a process that
averages the properties of earthquakes in these bins. Spectra
of individual earthquakes may also be obtained using our
technique; these show much greater variability in corner
frequency and apparent stress but their average properties
are consistent with the results presented here. Although we
do not take into account possible biasing effects, such as
systematic changes in focal mechanism or rupture directiv-
ity, it is likely that these effects are minimized by averaging
over stations at different distances and azimuths from the
source region.

[39] Our study supports models in which the average
apparent stress is constant as a function of earthquake size,
as suggested by Ide et al. [2003] and others. Our results are
limited by the small magnitude range spanned by our
earthquakes (1.8 < M < 3.4 for the EGF-corrected data)
but have sufficiently low scatter that fairly tight constraints
can be placed on any possible moment dependence
of apparent stress. Mayeda and Walter [1996] proposed
that EJ/M, is proportional to My* over the magnitude
range 3.3 < M < 7.3, consistent with the suggestion of
Abercrombie [1995] that apparent stress appears to increase
gradually with moment over a magnitude range from 0 to 7.
Such a strong dependence on M, is not supported by our
results over the limited size range of our data (our best
fitting scaling is M) °***'%). Comparisons with other studies
can extend the applicability of our results. Our estimated
average apparent stress of 1 MPa is above most of the
estimates of Abercrombie [1995] for similar size earth-
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quakes (i.e., My = 1.8 to 3.4) and is consistent with the
suggestion of Ide and Beroza [2001] that apparent stress has
a nearly constant value of 1 MPa over the entire observed
range of earthquake sizes.

[40] A large number of studies have suggested that the
source spectra might have more complex behavior than that
estimated from simple corner frequency models [e.g., Singh
and Ordaz, 1994; Mayeda and Walter, 1996] and should
include intermediate falloffs. Differences in the results
obtained in different studies might be due to model assump-
tions that depend upon parametric data derived from the
spectra rather than the spectra themselves. An advantage of
our approach is that we can directly use the shapes of the
spectra to test for self-similarity without any source model
assumptions. A source of concern for our parametric anal-
ysis is whether the maximum frequency of 80 Hz that we
use in our study is affecting our results, especially for
estimates of the corner frequency for the smallest earth-
quakes. This does not appear to be a problem because we
observe no saturation of the corner frequencies for the small
events (see Figure 12).

[41] The values of apparent stress that we obtain have
much less scatter than those seen in most previous studies,
probably because of the averaging that we perform within
each moment bin. Thus, although our study spans a quite
limited magnitude range, our nearly constant values of
apparent stress place fairly tight constraints on the amount
of any scaling with moment that could be present within our
data. Recently, Mayeda et al. [2004] have argued that a
potential problem exists in comparing apparent stress for
events over a broad region because the regional scatter of
the estimates could make resolving scaling variations prob-
lematic. Also, some of the trends of previous studies might
be masking (or exposing) the true trend, because of the large
range of apparent stress uncertainties. Our study has the
advantage of being restricted to a specific source region and
of averaging over a large number of earthquakes, reducing
the scatter and likely biases in our apparent stress estimates.

[42] Our results are limited to the cluster of earthquakes in
our study region but the spectral stacking method should
readily be applicable to other data sets. In particular, it
would be useful to study clusters or aftershock sequences
that contain larger earthquakes to extend the magnitude
range. There are a number of possible candidates in south-
ern California for such an analysis, including the Northridge
and Landers aftershock sequences. In addition, studies of
large numbers of distributed earthquakes, as recorded by
local and regional seismic networks, might reveal spatial
patterns in source properties. In this case, corrections for
attenuation effects will be more complicated than when the
earthquakes are restricted to a single cluster, but in princi-
ple, attenuation and source effects can be still be separated
using a spectral stacking approach.
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